'Cardinality Feedback'에 해당되는 글 3건

  1. 2010.10.25 Cardinality Feedback이 위험할 때 10
  2. 2010.10.22 공지 - Cardinality Feed Back이 위험할 때 1
  3. 2010.09.09 Bloom Filter와 Group By의 관계 10

부제: Cardinality Feed Back의 개념과 사용예제

이번 글은 난이도가 높으므로 익숙하지 않은 사람은 Cardinality Feedback의 개념 정도만 이해하기 바란다. 물론 이 블로그를 꾸준히 구독한 독자라면 어려움 없이 볼 수 있다.

 

현재 많은 시스템이 Oracle11g로 옮겨가고 있다. 11g는 새로운 기능이 많이 추가되었다. 하지만 새롭고 좋은 기능이라도 완벽하지 못하면 문제가 될 수 있다. 오늘은 11g의 새 기능 때문에 성능문제가 발생하는 경우를 소개한다.

시스템이 운영 중에 있을 때 가장 곤욕스러운 경우 중 하나는 SQL의 실행계획이 갑자기 바뀌어 성능이 나빠지는 것이다. SQL과 인덱스 그리고 통계정보가 모두 바뀌지 않아도 실행계획은 바뀔 수 있다. 예를 들면 Oracle11g의 기능인 Cardinality Feedback을 사용함으로 해서 얼마든지 실행계획이 바뀔 수 있는 것이다. 이번 시간에는 실행계획이 변경되는 원인 중 하나인 Cardinality Feedback 의 개념과 작동방식에 대해 알아보고 이것이 언제 문제가 되는지 분석해 보자. 이번에 소개할 예제는 종합적이다. Cardinality Feedback + Cost Based Query Transformation + Bloom Filter가 결합된 것이다. 이를 놓친다면 이들이 어떻게 결합되는지 알 수 없을 뿐만 아니라 성능이 악화된 원인을 파악할 수 없다.

 

예측, 실행, 비교, 그리고 전달

소 잃고 외양간 고친다는 말이 있다. 이미 늦었다는 이야기 이지만 좋은 말로 바꾸면 실수를 다시 하지 않겠다는 의지이다. cardinality feedback(이후 CF)도 이와 비슷한 개념이다. 예를 들어 col1 = ‘1’ 이라는 조건으로 filter되면 백만 건이 return된다고 옵티마이져가 예측해서 full table scan을 했다. 하지만 예측과 달리 실행결과가 100건이 나왔다면? 해당 SQL을 다시 실행할 때는 full table scan보다는 index scan이 유리할 것이다. 그런데 같은 SQL을 두 번째 실행할 때 "실제로는 백만 건이 아니라 100건 뿐이야"라는 정보를 옵티마이져에게 알려주는 전달자가 필요하다. 그 전달자가 바로 CF이다. CF가 없으면 결과가 100건 임에도 SQL을 실행 할 때마다 full table scan을 반복할 것이다. 결국 CF는 악성 실행계획을 올바로 수정하는 것이 목적이며 매우 유용한 기능임을 알 수 있다. CF의 단점은 최초에 한번은 full table scan이 필요하다는 것이다. 왜냐하면 실행해서 결과가 나와야만 실제 분포도(건수)를 알 수 있기 때문이다.

 

CF는 어떻게 실행되나?

CF는 같은 SQL을 두 번 이상 실행했을 때 적용된다. 그 이유는 아래의 CF 적용순서를 보면 알 수 있다.

1. 최초의 실행계획을 작성할 때(Hard Parsing 시에) 예측 분포도가 계산된다.

2. SQL이 실행된다. 한번은 실행 해봐야 예측 분포도와 실제 분포도를 비교할 수 있다.

3. 예측 분포도와 실제 분포도의 값이 차이가 크다면 실제 분포도를 저장한다.

4. 두 번째 실행될 때 CF에 의해 힌트의 형태로 옵티마이져에게 전달되어 실제 분포도가 적용된다. 이때 분포도뿐만 아니라 실행계획이 바뀔 수 있다. 두 번째 이후로 실행될 때는 CF가 계속 적용된다.

 

CF를 발생시켜보자

실행환경 :Oracle 11.2.0.1

 

ALTER SYSTEM FLUSH SHARED_POOL;

ALTER SESSION SET "_OPTIMIZER_USE_FEEDBACK" = TRUE; -- CF를 활성화 한다. default true이다.

 

SELECT /*+ GATHER_PLAN_STATISTICS LEADING(c)  */

       c.cust_id, c.cust_first_name, c.cust_last_name,

       s.prod_cnt, s.channel_cnt, s.tot_amt

  FROM customers c,

       (SELECT   s.cust_id,

                 COUNT (DISTINCT s.prod_id) AS prod_cnt,

                 COUNT (DISTINCT s.channel_id) AS channel_cnt,

                 SUM (s.amount_sold) AS tot_amt

            FROM sales s

        GROUP BY s.cust_id) s

 WHERE c.cust_year_of_birth = 1987

   AND s.cust_id = c.cust_id ;

 

----------------------------------------------------------------------------------------------------------------

| Id  | Operation                      | Name              | E-Rows | A-Rows |   A-Time   | Buffers | Used-Mem |

----------------------------------------------------------------------------------------------------------------

|   0 | SELECT STATEMENT               |                   |        |     23 |00:00:00.15 |    5075 |          |

|*  1 |  HASH JOIN                     |                   |    162 |     23 |00:00:00.15 |    5075 | 1215K (0)|

|   2 |   JOIN FILTER CREATE           | :BF0000           |    162 |    151 |00:00:00.01 |     148 |          |

|   3 |    TABLE ACCESS BY INDEX ROWID | CUSTOMERS         |    162 |    151 |00:00:00.01 |     148 |          |

|   4 |     BITMAP CONVERSION TO ROWIDS|                   |        |    151 |00:00:00.01 |       2 |          |

|*  5 |      BITMAP INDEX SINGLE VALUE | CUSTOMERS_YOB_BIX |        |      1 |00:00:00.01 |       2 |          |

|   6 |   VIEW                         |                   |   7059 |     55 |00:00:00.15 |    4927 |          |

|   7 |    SORT GROUP BY               |                   |   7059 |     55 |00:00:00.15 |    4927 |88064  (0)|

|   8 |     JOIN FILTER USE            | :BF0000           |    918K|   7979 |00:00:00.12 |    4927 |          |

|   9 |      PARTITION RANGE ALL       |                   |    918K|   7979 |00:00:00.11 |    4927 |          |

|* 10 |       TABLE ACCESS FULL        | SALES             |    918K|   7979 |00:00:00.09 |    4927 |          |

----------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):        

---------------------------------------------------        

   1 - access("S"."CUST_ID"="C"."CUST_ID")               

   5 - access("C"."CUST_YEAR_OF_BIRTH"=1987)               

  10 - filter(SYS_OP_BLOOM_FILTER(:BF0000,"S"."CUST_ID")) --> Bloom Filter 적용     

                

SQL 실행결과 sales 테이블의 예측 분포도는 918K건이며 실제 분포도는 Bloom Filter가 적용되어 7979건이다. 그리고 group by operation(ID 7)의 예측 분포도는 7059건이며 실제 분포도는 55건이다. 예측과 실제의 분포도 차이는 두 경우 모두 100배 이상이다. 따라서 CF가 적용될 것이다. 이와는 반대로 customers 테이블의 예측 분포도와 실제 분포도는 162 152로 크게 다르지 않으므로 CF가 적용되지 않을 것이다. 이제 위의 SQL을 재 실행한다면 CF가 적용되어 실제 분포도가 적용될 것이다.

 

--> CF를 발생시키기 위해 위의 SQL 다시 실행               

                

----------------------------------------------------------------------------------------------------------------

| Id  | Operation                      | Name              | E-Rows | A-Rows |   A-Time   | Buffers | Used-Mem |

----------------------------------------------------------------------------------------------------------------

|   0 | SELECT STATEMENT               |                   |        |     23 |00:00:05.61 |    5075 |          |

|   1 |  SORT GROUP BY                 |                   |     55 |     23 |00:00:05.61 |    5075 |75776  (0)|

|*  2 |   HASH JOIN                    |                   |    270 |   3230 |00:00:05.60 |    5075 | 1201K (0)|

|   3 |    TABLE ACCESS BY INDEX ROWID | CUSTOMERS         |    162 |    151 |00:00:00.01 |     148 |          |

|   4 |     BITMAP CONVERSION TO ROWIDS|                   |        |    151 |00:00:00.01 |       2 |          |

|*  5 |      BITMAP INDEX SINGLE VALUE | CUSTOMERS_YOB_BIX |        |      1 |00:00:00.01 |       2 |          |

|   6 |    PARTITION RANGE ALL         |                   |   7979 |    918K|00:00:02.82 |    4927 |          |

|   7 |     TABLE ACCESS FULL          | SALES             |   7979 |    918K|00:00:00.98 |    4927 |          |

----------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):               

---------------------------------------------------

   2 - access("S"."CUST_ID"="C"."CUST_ID")

   5 - access("C"."CUST_YEAR_OF_BIRTH"=1987)

 

Note

-----

   - cardinality feedback used for this statement --> CF가 발생되었음을 나타냄.

 

두 번째 실행 할 때 CF가 적용되어 예측 분포도가 7979로 바뀌었고 group by 분포도는 55건으로 바뀌었다. 이에 따라 실행계획도 바뀌었다. CF에 의해서 쿼리변환(Complex View Merging)이 발생된 것이다. 그리고 note CF가 적용되었다고 친절히 설명된다.

 

이제 더 자세한 분석을 위하여 10053 Trace의 내용을 보자. 두 번째 실행된 SQL 10053 Trace에 따르면 쿼리변환전의 SQL은 다음과 같다.

 

SELECT /*+ LEADING (C) */

       c.cust_id, c.cust_first_name, c.cust_last_name,

       s.prod_cnt, s.channel_cnt, s.tot_amt tot_amt

  FROM tlo.customers c,

       (SELECT   /*+ OPT_ESTIMATE (GROUP_BY ROWS=55.000000 ) OPT_ESTIMATE (TABLE S ROWS=7979.000000 ) */

                 s.cust_id cust_id, COUNT (DISTINCT s.prod_id) prod_cnt,

                 COUNT (DISTINCT s.channel_id) channel_cnt, SUM (s.amount_sold) tot_amt

            FROM tlo.sales s

        GROUP BY s.cust_id) s

 WHERE c.cust_year_of_birth = 1987

AND s.cust_id = c.cust_id ;

 

CF에 의해서 OPT_ESTIMATE 힌트가 적용되었다. 실제 건수로 적용하는 것이므로 일견 문제가 없어 보인다. 하지만 쿼리변환과정(Complex View Merging)을 거치면 문제가 생긴다. 10053 Trace에서 나타난 쿼리변환 후의 SQL은 다음과 같다.

 

SELECT   /*+ OPT_ESTIMATE (GROUP_BY ROWS=55.000000 ) LEADING (C) OPT_ESTIMATE (TABLE S ROWS=7979.000000 ) */

         c.cust_id cust_id, c.cust_first_name cust_first_name,

         c.cust_last_name cust_last_name, COUNT (DISTINCT s.prod_id) prod_cnt,

         COUNT (DISTINCT s.channel_id) channel_cnt, SUM (s.amount_sold) tot_amt

    FROM tlo.customers c, tlo.sales s

   WHERE c.cust_year_of_birth = 1987

AND s.cust_id = c.cust_id

GROUP BY s.cust_id, c.ROWID, c.cust_last_name, c.cust_first_name, c.cust_id ;

 

CF의 문제점은?

위의 SQL은 두 가지 문제점이 있다. 두 문제 모두 쿼리변환에 의해 발생된다. 첫 번째 문제는 Bloom Filter와 관련된 것이다. CF의 영향으로 원본 SQL에 존재했던 Group By (Complex View)가 사라졌다. 뷰가 없어짐으로써 Bloom Filter가 적용되지 않는다. Filter가 사라졌음에도 불구하고 Filter가 존재했던 Cardinality 7979를 적용해 버렸다. 이에 따라 CF를 적용했음에도 7979건과 실제건수인 91 8천 건과는 엄청난 차이가 나고 말았다. Bloom Filter가 사라질 때는 CF를 적용하면 안 된다는 이야기이다. 비유하자면 Filter가 없는데도 불구하고 Filter가 존재할 때의 건수를 적용시킨 것이다.

 

두 번째 문제는 쿼리변환 후 힌트의 상속과 관련된다. 쿼리변환전의 CF의 의한 힌트를 보면 Group By된 뷰의 건수는 55건이다. 그런데 이 힌트는 오직 sales 테이블에 대한 것이다. 그런데 쿼리변환후의 힌트를 보면 그대로 55건이 적용되어 되어버렸다. Group by가 외부로 빠져 나옴으로 해서 GROUP_BY ROWS는 전체건수와 마찬가지가 되어버렸다. sales 테이블의 Group By건수는 55건이 맞다. 하지만 쿼리변환 때문에 조인 후에 Group By 하게 된다면 cardinality를 다시 계산해야 한다. 조인이 없는 테이블의 Group By건수와 조인후의 Group By건수가 어떻게 같을 수 있나?

 

두 가지의 문제점은 Cost를 계산할 때 그대로 적용되어 버린다. 10053 trace를 보자.

 

Access path analysis for SALES

***************************************

SINGLE TABLE ACCESS PATH

  Single Table Cardinality Estimation for SALES[S]

  Table: SALES  Alias: S

    Card: Original: 918843.000000    >> Single Tab Card adjusted from:918843.000000 to:7979.000000

  Rounded: 7979  Computed: 7979.00  Non Adjusted: 918843.00

  Access Path: TableScan

    Cost:  1328.68  Resp: 1328.68  Degree: 0

      Cost_io: 1321.00  Cost_cpu: 155262306

      Resp_io: 1321.00  Resp_cpu: 155262306

 

Bloom Filter가 없음에도 불구하고 Sales 테이블의 건수(Cardinality) 7979로 적용되어 버렸다. 이제 Group By가 적용된 건수를 보자.

 

GROUP BY cardinality:  270.000000, TABLE cardinality:  270.000000

>> Query Blk Card adjusted from 270.000000  to: 55.000000

    SORT ressource         Sort statistics

      Sort width:         583 Area size:      510976 Max Area size:   102340608

      Degree:               1

      Blocks to Sort: 3 Row size:     69 Total Rows:            270

      Initial runs:   1 Merge passes:  0 IO Cost / pass:          0

      Total IO sort cost: 0      Total CPU sort cost: 20302068

      Total Temp space used: 0


Group By Cardinality와 관련된 Trace 내용이다. 여기서도 잘못된 Group By건수인 55를 적용시키고 있다. 조인 후에 Group By할 때는 Cardinality를 다시 계산해야 옳다. 이래서는 제대로 된 Cost가 나올 수 없다. 여기에 밝혀진 문제점은 SQL 하나에서 나온 것이므로 실전에서는 두 가지 문제뿐만 아니라 더 많을 것이다. 물론 옵티마이져가 모든 경우에 완벽할 수는 없다.


해결책
CF
문제의 해결방법을 생각해보자. 갑자기 실행계획이 바뀌어 성능문제가 발생했을 때 dbms_xplan.display_cursor의 note나 10053 Trace의 실행계획 부분을 보면 CF가 적용되었는지 아닌지 알 수 있다. 만약 CF가 적용되었다면 일단 의심해보아야 한다. 아래는 10053 trace의 실행계획 부분이다.

-----------------------------------------------------------+------------------------

| Id  | Operation                       | Name             | Rows  | Bytes | Cost  |

-----------------------------------------------------------+------------------------

| 0   | SELECT STATEMENT                |                  |       |       |  1368 |

| 1   |  SORT GROUP BY                  |                  |    55 |  2915 |  1368 |

| 2   |   HASH JOIN                     |                  |   270 |   14K |  1367 |

| 3   |    TABLE ACCESS BY INDEX ROWID  | CUSTOMERS        |   162 |  5832 |    38 |

| 4   |     BITMAP CONVERSION TO ROWIDS |                  |       |       |       |

| 5   |      BITMAP INDEX SINGLE VALUE  | CUSTOMERS_YOB_BIX|       |       |       |

| 6   |    PARTITION RANGE ALL          |                  |  7979 |  132K |  1329 |

| 7   |     TABLE ACCESS FULL           | SALES            |  7979 |  132K |  1329 |

-----------------------------------------------------------+------------------------

Predicate Information:

----------------------

2 - access("S"."CUST_ID"="C"."CUST_ID")

5 - access("C"."CUST_YEAR_OF_BIRTH"=1987)

 

Content of other_xml column

===========================

nodeid/pflags: 7 17nodeid/pflags: 6 17  cardinality_feedback: yes --> CF가 적용됨

...이후 생략


만약 CF가 문제가 된다면 해당 SQL을 시작하기 전에 세션단위로 _optimizer_use_feedback = false를 적용하거나 opt_param 힌트를 사용하면 된다. 이렇게 하면 CF가 방지되어 쿼리변환의 원인이 제거된다. 따라서 Bloom Filter도 보존할 수 있다. 또 다른 방법은 인라인뷰에 no_merge 힌트를 적용하여 쿼리변환을 방지하면 문제는 해결된다. 이 두 가지 방법은 결국 쿼리변환을 방지하는 것이다.

 

결론

CF란 건수를 예측하고, 실행해서 실제건수와 예측건수를 비교하여 차이가 많다면 다음 번에 실행할 때 옵티마이져에게 실제건수를 전달해주는 역할을 한다. CF의 개념을 정리 했으므로 이제 큰 그림을 그려보자. 위의 예제에서 성능이 악화된 직접적인 이유는 Bloom Filter가 사라졌기 때문이다. 하지만 그렇게 된 이유는 쿼리변환 때문이며 쿼리변환의 이유는 CF 때문이다. 직접적인 원인을 찾았다고 해도 포기해선 안 된다. 꼬리에 꼬리를 무는 원인이 있을 수 있기 때문이다. 이를 도식화 하면 다음과 같다.

사용자 삽입 이미지


옵티마이져의 설계관점에서 개선해야 될 사항을 논의 해보자. 옵티마이져가 CBQT를 고려할 때는 두 가지의 경우로 판단한다. 쿼리변환을 적용하기 전(Iteration 1) Cost와 적용 후(Iteration 2) Cost를 비교해야 되기 때문이다. 쿼리변환전의 Cost를 구할 때는 CF를 적용시키고 반대로 쿼리변환 후에는 CF를 적용하지 않는 것이 더 좋은 Cost를 구할 수 있다. 왜냐하면 비록 답이 같다고 하더라도 형태가 전혀 다른 SQL에 대해 CF를 적용시킬 이유는 없기 때문이다. 물론 이렇게 해도 여전히 문제가 될 수는 있다. 하지만 문제의 발생확률은 많이 줄어들지 않겠는가?

 


Posted by extremedb
,

블로그가 일주일에 한번만 업데이트 되기 때문에 많은 분들이 어떤 내용이 블로그에 올라올지 궁금해 하시는것 같습니다. 그래서 시간이 허락한다면 블로그에 올라갈 내용을 미리 공지 하겠습니다.
 
제목
: Cardinality Feed Back
이 위험할 때

부제목: Cardinality Feed Back의 개념과 사용예제

문서의 목적
1. Oracle11
의 새 기능인 Cardinality Feedback의 개념을 알아보고 실행예제를 분석해본다.
2. Cardinality Feedback
이 문제가 되는 경우를 살펴보고 해결방법을 제시한다
.

목차
1.
서론
2. Cardinality Feedback의 개념:
소제목 예측, 실행, 비교, 그리고 전달 부분
3. Cardinality Feedback의 작동방법: 소제목 CF는 어떻게 실행되나? 부분
4.
Cardinality Feedback 실행예제: 소제목 CF를 발생시켜보자 부분
5.
Cardinality Feedback 문제점: 소제목 CF의 문제점은? 부분
6.
문제의 해결방법: 소제목 해결책 부분
7.
결론

분석도구
1. 10053 Trace
2. DBMS_XPLAN.display_cursor

참조문서
Closing the Query Processing Loop in Oracle 11g - Allison Lee, Mohamed Zait


예상발행일자
2010.10.25 일


주의사항: 블로그 내용은 예고없이 변경될 수 있습니다.

많이 기대해주세요.

Posted by extremedb
,

이전에 Parallel Query 의 조인시 또다른 튜닝방법(Parallel Join Filter) Partition Access Pattern 이라는 글에서 Bloom Filter의 개념을 설명한적 있다. 이전 글들 때문인지 모르겠으나 많은 사람들이 Parallel Query를 사용하거나 Partition을 엑세스 할때 Bloom Filter로 후행 테이블의 건수를 줄여 조인 건수를 최소화하는 것으로만 생각한다. 맞는 말이지만 그것이 전부가 아니다.
그래서 이번에는 Parallel Partition에 상관없이 Bloom Filter가 발생하는 경우를 살펴보고자 한다. 이 글을 통하여 풀고자 하는 오해는 Bloom FilterJoin 최적화를 위한 후행 테이블의 Filter 알고리즘일 뿐만 아니라 Group By를 최적화하는 도구이기도 하다는 것이다.

 

실행환경: Oracle11gR2, Windows 32bit

 

Bloom Filter를 사용하지 않는 경우

먼저 Bloom Filter가 발생하지 않게 힌트를 주고 실행한다. 뒤에서 Bloom Filter를 적용한 경우와 성능을 비교하기 위함이다.

 

SELECT /*+ LEADING(c) NO_MERGE(S) NO_PX_JOIN_FILTER(S) */

       c.cust_id, c.cust_first_name, c.cust_last_name,

       s.prod_cnt, s.channel_cnt, s.tot_amt

  FROM customers c,

       (SELECT   s.cust_id,

                 COUNT (DISTINCT s.prod_id) AS prod_cnt,

                 COUNT (DISTINCT s.channel_id) AS channel_cnt,

                 SUM (s.amount_sold) AS tot_amt

            FROM sales s

        GROUP BY s.cust_id) s

 WHERE c.cust_year_of_birth = 1987

   AND s.cust_id = c.cust_id ;

   

------------------------------------------------------------------------------------------------------

| Id  | Operation                     | Name              | A-Rows |   A-Time   | Buffers | Used-Mem |

------------------------------------------------------------------------------------------------------

|   0 | SELECT STATEMENT              |                   |     23 |00:00:06.58 |    5075 |          |

|*  1 |  HASH JOIN                    |                   |     23 |00:00:06.58 |    5075 | 1194K (0)|

|   2 |   TABLE ACCESS BY INDEX ROWID | CUSTOMERS         |    151 |00:00:00.01 |     148 |          |

|   3 |    BITMAP CONVERSION TO ROWIDS|                   |    151 |00:00:00.01 |       2 |          |

|*  4 |     BITMAP INDEX SINGLE VALUE | CUSTOMERS_YOB_BIX |      1 |00:00:00.01 |       2 |          |

|   5 |   VIEW                        |                   |   7059 |00:00:06.56 |    4927 |          |

|   6 |    SORT GROUP BY              |                   |   7059 |00:00:06.54 |    4927 | 9496K (0)|

|   7 |     PARTITION RANGE ALL       |                   |    918K|00:00:02.80 |    4927 |          |

|   8 |      TABLE ACCESS FULL        | SALES             |    918K|00:00:00.95 |    4927 |          |

------------------------------------------------------------------------------------------------------

 

Predicate Information (identified by operation id):

---------------------------------------------------

   1 - access("S"."CUST_ID"="C"."CUST_ID")

   4 - access("C"."CUST_YEAR_OF_BIRTH"=1987)

 

Id 기준으로 8번에서 Buffers 항목을 보면 전체건(4927 블록) Scan 하였다. 그리고 A-Rows 항목을 보면 Sales 테이블에 대해 약 92만건(918K)을 읽었다. 이제 Id 6번을 보자. 전체 건수인 92만건에 대하여 Sort Group By를 적용하는데 부하가 집중되는 것을 알 수 있다. 시간상으로도 Group By를 하는데 3.7초 정도 걸렸으며 PGA 9496K나 사용하였다. 즉 대부분의 시간을 Sort Group By Operation 에서 소비한 것이다.

 

이제 위의 SQL Bloom Filter를 적용해 보자. Sales 테이블에 파티션이 적용되어 있으나 파티션과 상관없이 Bloom Filter가 적용된다.

 

SELECT /*+ LEADING(c) NO_MERGE(S) PX_JOIN_FILTER(S) */

       c.cust_id, c.cust_first_name, c.cust_last_name,

       s.prod_cnt, s.channel_cnt, s.tot_amt

  FROM customers c,

       (SELECT   s.cust_id,

                 COUNT (DISTINCT s.prod_id) AS prod_cnt,

                 COUNT (DISTINCT s.channel_id) AS channel_cnt,

                 SUM (s.amount_sold) AS tot_amt

            FROM sales s

        GROUP BY s.cust_id) s

 WHERE c.cust_year_of_birth = 1987

   AND s.cust_id = c.cust_id ;

   

 

-------------------------------------------------------------------------------------------------------

| Id  | Operation                      | Name              | A-Rows |   A-Time   | Buffers | Used-Mem |

-------------------------------------------------------------------------------------------------------

|   0 | SELECT STATEMENT               |                   |     23 |00:00:00.15 |    5075 |          |

|*  1 |  HASH JOIN                     |                   |     23 |00:00:00.15 |    5075 | 1197K (0)|

|   2 |   JOIN FILTER CREATE           | :BF0000           |    151 |00:00:00.01 |     148 |          |

|   3 |    TABLE ACCESS BY INDEX ROWID | CUSTOMERS         |    151 |00:00:00.01 |     148 |          |

|   4 |     BITMAP CONVERSION TO ROWIDS|                   |    151 |00:00:00.01 |       2 |          |

|*  5 |      BITMAP INDEX SINGLE VALUE | CUSTOMERS_YOB_BIX |      1 |00:00:00.01 |       2 |          |

|   6 |   VIEW                         |                   |     55 |00:00:00.14 |    4927 |          |

|   7 |    SORT GROUP BY               |                   |     55 |00:00:00.14 |    4927 |88064  (0)|

|   8 |     JOIN FILTER USE            | :BF0000           |   7979 |00:00:00.12 |    4927 |          |

|   9 |      PARTITION RANGE ALL       |                   |   7979 |00:00:00.10 |    4927 |          |

|* 10 |       TABLE ACCESS FULL        | SALES             |   7979 |00:00:00.09 |    4927 |          |

-------------------------------------------------------------------------------------------------------

 

Predicate Information (identified by operation id):

---------------------------------------------------

   1 - access("S"."CUST_ID"="C"."CUST_ID")

   5 - access("C"."CUST_YEAR_OF_BIRTH"=1987)

  10 - filter(SYS_OP_BLOOM_FILTER(:BF0000,"S"."CUST_ID"))

 

Bloom Filter를 사용해보니

위의 실행계획에서 Id 기준으로 8번을 보면 Name 항목에 Bloom Filter가 사용되었다. Bloom Filter의 위력이 얼마나 대단한지 살펴보자. 먼저 Sales 테이블을 Full Table Scan 하였으므로 Buffers 4927Bloom Filter를 사용하지 않는 경우와 똑같다. 하지만 Bloom Filter가 적용되어 92만건이 아닌 7979(A-Rows 참조)만 살아남았다. 이처럼 Bloom FilterHash Join Probe(후행) 집합에서 조인에 참여하는 건수를 줄임으로써 Join 시간을 단축시킨다. Bloom Filter의 효과는 이것이 끝이 아니다. 건수가 줄어듦으로 해서 Sort Group By 작업 또한 92만 건이 아니라 7979건만 하면 된다. Group By에 의한 PGA 사용량을 Bloom Filter가 적용된 실행계획과 비교해보면 100배 이상 차이가 나는 이유도 Bloom Filter의 효과 때문이다.

 

제약사항

이번에 test한 케이스는 Parallel Query도 아니며 Partition Pruning과도 관련이 없다. 하지만 항상 발생하지는 않는다. 이유는 세 가지 제약사항이 있기 때문이다.

첫 번째, Hash Join을 사용해야 한다. Sort Merge Join이나 Nested Loop Join에서는 발생하지 않는다.
두 번째, Build Input(Driving) 집합에 Filter 조건이 존재해야 한다. 위의 SQL에서는 cust_year_of_birth = 1987 Filter 조건으로 사용되었다. Filter가 필요한 이유는 선행집합의 Filter조건을 후행집합에서 Bloom Filter로 사용해야 하기 때문이다.
세 번째, Probe(후행) 집합에서 Group By를 사용해야 한다. 위의 SQL에서도 cust_id Group By를 하고 있다. 물론 후행집합에 Group By가 적용되려면 뷰나 인라인뷰가 필요하다.

 

 

만약 Bloom Filter가 사라져 전체 건이 조인에 참여한다면?

상상하기 싫은 경우지만 Probe(후행) 집합에 Bloom Filter가 사라지는 경우를 살펴보자. 이 경우는 Sales 테이블 전체건수( 92만건)가 모두 Hash Join에 참여하게 되므로 성능이 저하될 것이다. 아래의 SQL이 그것인데 위의 SQL에서 NO_MERGE(S) 힌트와 PX_JOIN_FILTER(S)만 뺀 것이다.

 

SELECT /*+ LEADING(c)  */

       c.cust_id, c.cust_first_name, c.cust_last_name,

       s.prod_cnt, s.channel_cnt, s.tot_amt

  FROM customers c,

       (SELECT   s.cust_id,

                 COUNT (DISTINCT s.prod_id) AS prod_cnt,

                 COUNT (DISTINCT s.channel_id) AS channel_cnt,

                 SUM (s.amount_sold) AS tot_amt

            FROM sales s

        GROUP BY s.cust_id) s

 WHERE c.cust_year_of_birth = 1987

   AND s.cust_id = c.cust_id ;

 

-------------------------------------------------------------------------------------------------------

| Id  | Operation                      | Name              | A-Rows |   A-Time   | Buffers | Used-Mem |

-------------------------------------------------------------------------------------------------------

|   0 | SELECT STATEMENT               |                   |     23 |00:00:05.39 |    5075 |          |

|   1 |  SORT GROUP BY                 |                   |     23 |00:00:05.39 |    5075 |75776  (0)|

|*  2 |   HASH JOIN                    |                   |   3230 |00:00:05.37 |    5075 | 1185K (0)|

|   3 |    TABLE ACCESS BY INDEX ROWID | CUSTOMERS         |    151 |00:00:00.01 |     148 |          |

|   4 |     BITMAP CONVERSION TO ROWIDS|                   |    151 |00:00:00.01 |       2 |          |

|*  5 |      BITMAP INDEX SINGLE VALUE | CUSTOMERS_YOB_BIX |      1 |00:00:00.01 |       2 |          |

|   6 |    PARTITION RANGE ALL         |                   |    918K|00:00:02.70 |    4927 |          |

|   7 |     TABLE ACCESS FULL          | SALES             |    918K|00:00:00.94 |    4927 |          |

-------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

 

   2 - access("S"."CUST_ID"="C"."CUST_ID")

   5 - access("C"."CUST_YEAR_OF_BIRTH"=1987)

 

악성 쿼리변환

힌트를 제거하자 View Merging(뷰 해체)이 발생하여 인라인뷰가 제거되었다. (View Merging이 발생하지 않는 독자는 MERGE(S) 힌트를 추가하기 바란다) 뷰가 없어짐에 따라 후행집합에서 Group By가 없어지고 조인이 끝난 후에 Group By가 발생한다. 후행집합의 Group By가 사라졌으므로 Bloom Filter가 적용되지 않는다. 따라서 Sales 테이블의 전체건 ( 92만건)이 조인에 참여하게 된다. Bloom Filter가 적용된 경우는 단 55건만 조인에 참여하므로 이 차이는 어마 어마한 것이다. 그 결과 전체 수행시간중에서 Hash Join에서만 절반의 시간을 소모하였다. 즉 잘못된 쿼리변환이 발생하여 Bloom Filter를 죽여버린 것이다. View Merging이 발생할 때 Bloom Filter를 적용할 수 없게되어 비효율이 발생되는지 주의깊게 관찰해야 한다.

 

 

결론

이번 Test 케이스에서 Bloom Filter의 특징을 두 가지로 압축할 수 있다. Group By 작업량을 최소화 시켜주고 Hash Join 건수를 줄여준다. 이 두 가지 효과가 맞물려 Bloom Filter를 적용한 SQL 0.15초 만에 끝날 수 있는 것이다. 후행 테이블에서 Bloom Filter로 걸러지는 건수가 많을 때 두 가지 작업(Group By, Hash Join) 모두 최대의 효율을 발휘한다. 바꿔 말하면 Bloom Filter로 제거되는 건수가 미미 하다면 사용해선 안된다.

CVM(Complex View Merging)이 발생하면 여지없이 Bloom Filter가 사라진다. CVM 때문에 성능이 저하된다면 NO_MERGE 힌트를 사용하여 뷰를 유지시켜야 한다. Bloom Filter가 사라지는 경우는 이 경우 뿐만 아니다. 11gR2에서 새로 적용된 Cardinality Feedback 때문에 Bloom Filter가 사라지는 경우가 보고되고 있다. 마지막(세번째) SQL을 최초로 실행시켰을 때와 두번째로 실행시켰을 때 DBMS_XPLAN.DISPLAY_CURSOR의 실행계획이 달라진다면 Cardinality Feedback이 Bloom Filter를 제거시킨것이다. Shared Pool을 Flush하고 두번 연달아 테스트 해보기 바란다. 이런 현상들 때문에 옵티마이져에 새로운 기능이 추가될 때마다 긴장을 늦출 수 없다. 버전이 올라갈수록 튜닝하기가 쉬워지는것인가? 아니면 그 반대인가?


 

Posted by extremedb
,