'unnesting'에 해당되는 글 2건

  1. 2009.04.15 오라클에 트랜스포머가 있다? 4
  2. 2008.09.09 Using Sub query Method (Sub query Flattening ) 10
부제목: 다단계 쿼리변환 (Muti-Phase Query Transformation)

  SF 영화 트랜스포머를 보면 자동차가 로봇으로 변환하는 과정이 있다. 자동차와 로봇간의 변환과정은 아주 현란하다 못해 활홍하여 시청자자로 하여금 넋을 놓고 빠져들게 한다. 컴퓨터그래픽(CG) 기술의 발전 덕분이다.

변환과정이 있어야 지구를 지킬수 있어
  만약 이 영화에서 자동차가 로봇으로 변환을 못한다고 상상해보자. 악한 로봇이 쳐들어와도 싸울수가 없고 격렬한 전투장면도 사라진다. 이래서는 영화가 재미없을 뿐더러 지구를 지킬수도 없다. 그럼 오라클에서 Query Transformer 가 없어진다면 어떻게 될까? 마찬가지로 Query 의 상당부분을 튜닝할수 없게 되어 전체 시스템이 느려지게된다. Query Transformer 의 목적은 성능향상에 있다.

오라클에도 트랜스포머가 있다.
  오라클 Optimizer 에서 Query Transformer 는 3대 Components 로서 아주 중요한 위치에 있다.
먼저 Query Transformer 를 이해하기 위해서 Optimizer 구조를 살펴볼 필요가 있다.
사용자 삽입 이미지
 
먼저 Query Parser 가 SQL 을 검사하여 넘겨주면 Transformer 가 SQL 을 변신시켜서 Estimator 에 넘겨준다.
이때 Estimator는 통계정보등을 참조하여 가장 낮은 cost 를 갖는 SQL 을 찾아내어 Plan Generator 에 넘겨주고 실행계획을 완성하게 된다.  사실 위의 그림은 오라클 Performance Tuning Guide 에 있는 그림 이지만 잘못된 것이 있다. Query Transformer 가 Estimator 에게 주는 SQL 은 하나이상이 될수 있으므로  Estimator 와 Plan Generator 의 관계처럼 반복적인 Loop 가 있어야 한다.

변환과정도 로봇에 따라 다양하다.
  트랜스포머에서 주인공 로봇의 변환과정은 아주 복잡하다. 하지만 소형 악당 로봇이 카세트 레코더로 변환하는 과정을 유심히 보았는가? 이 과정은 매우 간단하다. 오라클의 쿼리변환(Query Transformation) 과정도 간단한 것에서 부터 아주 복잡한 과정을 거치는 것 까지 다양하다.

구슬이 서말이라도 꿰어야 보배
  오늘은 조금 어려운 다단계 쿼리변환-(Muti-Phase-Query Transformation)에 대하여 알아보려 한다.
참고로 아래의 글이 이해하기 힘든 독자는 필자의 이전글 Using Sub query Method (Sub query Flattening ) 과 Using Sub query Method( Filter / Access sub Query ) 를 먼저 읽어보기 바란다.
그럼 각 단계별로 변환과정을 보자. 

1 단계 : 원본 쿼리
            자신이 속한 부서의 평균급여 보다 돈을 많이 받는 사원을 추출하는 예제이다.

select /*+ gather_plan_statistics */ outer.*
 from emp outer
where outer.sal > ( select /*+ NO_UNNEST */  avg(inner.sal)
                              from emp inner
                             where inner.deptno = outer.deptno
                           ); 


--------------------------------------------------------------------------------------------
| Id  | Operation                     | Name      | Starts | A-Rows |   A-Time   | Buffers |
--------------------------------------------------------------------------------------------
|*  1 |  FILTER                       |           |      1 |      5 |00:00:00.01 |      16 |
|   2 |   TABLE ACCESS FULL           | EMP       |      1 |     14 |00:00:00.01 |       8 |
|   3 |   SORT AGGREGATE              |           |      5 |      5 |00:00:00.01 |       8 |
|   4 |    TABLE ACCESS BY INDEX ROWID| EMP       |      5 |     13 |00:00:00.01 |       8 |
|*  5 |     INDEX RANGE SCAN          | IX_EMP_N3 |      5 |     13 |00:00:00.01 |       3 |
--------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
   1 - filter("OUTER"."SAL">)
   5 - access("INNER"."DEPTNO"=:B1)


전통적인 Filter Subquery(확인자 SubQuery) 이다.


2.단계 : 서브쿼리를 인라인뷰로 바꿔라.
 이 단계에서 unnest 힌트를 사용함으로서 Subquery 가 인라인뷰로 바뀌며 서브쿼리가 없어진다. 이때 메인쿼리의 건수를 유지하기 위해 인라인뷰에 group by 가 추가된다.

select /*+ gather_plan_statistics */ outer.*
 from emp outer
where outer.sal > ( select /*+ QB_NAME(SUB) UNNEST */  avg(inner.sal)
                               from emp inner
                             where inner.deptno = outer.deptno
                          );


-----------------------------------------------------------------------------------------------------
| Id  | Operation                   | Name      | Starts | A-Rows |   A-Time   | Buffers | Used-Mem |
-----------------------------------------------------------------------------------------------------
|*  1 |  TABLE ACCESS BY INDEX ROWID| EMP       |      1 |      5 |00:00:00.01 |      16 |          |
|   2 |   NESTED LOOPS              |           |      1 |     19 |00:00:00.09 |      10 |          |
|   3 |    VIEW                     | VW_SQ_1   |      1 |      5 |00:00:00.01 |       7 |          |
|   4 |     HASH GROUP BY           |           |      1 |      5 |00:00:00.01 |       7 | 1622K (0)|
|   5 |      TABLE ACCESS FULL      | EMP       |      1 |     14 |00:00:00.01 |       7 |          |
|*  6 |    INDEX RANGE SCAN         | IX_EMP_N3 |      5 |     13 |00:00:00.01 |       3 |          |
-----------------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
   1 - filter("OUTER"."SAL">"VW_COL_1")
   6 - access("DEPTNO"="OUTER"."DEPTNO")
       filter("OUTER"."DEPTNO" IS NOT NULL)  

이것은
Optimizer가 쿼리를 아래처럼 변형시킨것이다.

select /*+ gather_plan_statistics  */
       outer.*
 from emp outer,
       ( select deptno, avg(sal) AS VW_COL_1
            from emp
          group by deptno
        ) A
where outer.sal > A.VW_COL_1
   and outer.deptno = A.deptno ;

-----------------------------------------------------------------------------------------------------
| Id  | Operation                   | Name      | Starts | A-Rows |   A-Time   | Buffers | Used-Mem |
-----------------------------------------------------------------------------------------------------
|*  1 |  TABLE ACCESS BY INDEX ROWID| EMP       |      1 |      5 |00:00:00.01 |      16 |          |
|   2 |   NESTED LOOPS              |           |      1 |     19 |00:00:00.13 |      10 |          |
|   3 |    VIEW                     |           |      1 |      5 |00:00:00.01 |       7 |          |
|   4 |     HASH GROUP BY           |           |      1 |      5 |00:00:00.01 |       7 | 1622K (0)|
|   5 |      TABLE ACCESS FULL      | EMP       |      1 |     14 |00:00:00.01 |       7 |          |
|*  6 |    INDEX RANGE SCAN         | IX_EMP_N3 |      5 |     13 |00:00:00.01 |       3 |          |
-----------------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   1 - filter("OUTER"."SAL">"A"."VW_COL_1")
   6 - access("OUTER"."DEPTNO"="A"."DEPTNO")
       filter("OUTER"."DEPTNO" IS NOT NULL)

 2단계의 원본 쿼리와 Plan 이 일치함을 알수 있다.


3단계 : 인라인뷰를 해체하라.
MERGE 힌트를 사용함으로서 2단계에서 Unnesting 된 인라인뷰를 해체하여 조인으로 바뀌었다. 이것을 View Merging 이라고 부른다.

select /*+ gather_plan_statistics MERGE(@SUB) */
       outer.*
 from emp outer
where outer.sal > ( select /*+ QB_NAME(SUB) UNNEST */  avg(inner.sal)
                               from emp inner
                            where inner.deptno = outer.deptno
                          );

다시말하면 위의 쿼리를 Optimizer가 아래처럼 재작성 한것이다.

select /*+ gather_plan_statistics */
             outer.deptno deptno,outer.sal sal,
             outer.empno empno
   from emp inner,
          emp outer
  where inner.deptno=outer.deptno
  group by inner.deptno, outer.rowid, outer.empno, outer.sal, outer.deptno
  having outer.sal > avg(inner.sal) ;

메인쿼리의 결과집합을 보존하기위하여 rowid 로 Group by 를 한것에 유의하자.
두개의 Query  Plan 은 동일하며 아래와 같다.
 
-----------------------------------------------------------------------------------------------
| Id  | Operation                      | Name      | A-Rows |   A-Time   | Buffers | Used-Mem |
-----------------------------------------------------------------------------------------------
|*  1 |  FILTER                        |           |      5 |00:00:00.01 |      12 |          |
|   2 |   HASH GROUP BY                |           |     13 |00:00:00.01 |      12 | 1103K (0)|
|   3 |    MERGE JOIN                  |           |     51 |00:00:00.01 |      12 |          |
|   4 |     TABLE ACCESS BY INDEX ROWID| EMP       |     13 |00:00:00.01 |       5 |          |
|*  5 |      INDEX FULL SCAN           | IX_EMP_N3 |     13 |00:00:00.01 |       1 |          |
|*  6 |     SORT JOIN                  |           |     51 |00:00:00.01 |       7 | 2048  (0)|
|*  7 |      TABLE ACCESS FULL         | EMP       |     13 |00:00:00.01 |       7 |          |
-----------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
   1 - filter("OUTER"."SAL">AVG("INNER"."SAL"))
   5 - filter("INNER"."DEPTNO" IS NOT NULL)
   6 - access("INNER"."DEPTNO"="OUTER"."DEPTNO")
       filter("INNER"."DEPTNO"="OUTER"."DEPTNO")
   7 - filter("OUTER"."DEPTNO" IS NOT NULL)
 
 드디어  1~3 단계에 걸친 Query Transformation 단계가 완성 되었다. 그결과는 성능면에서 대성공이다. Buffers(읽은 Block수) 가 16(원본쿼리) 에서 12 로 약 25% 감소했다.

오라클 트랜스포머는 악성쿼리와 싸워...
  오라클 Query Transformer 는 SQL 을 멋지게 변화시켰다. 이모든 과정을 개발자가 해야한다고 상상해보자.
개발자들에게 전체과정을 이해시키는 교육과정이 추가되어야 하고 개발속도는 몇배나 느려질것이다. 이는 프로젝트의 Risk 가 될것이다. 하지만 오라클 Query Transformer 가 있으므로 악당 로봇이 아닌 악성쿼리와 멋지게 싸워서 이길수 있는 것이다.

편집후기 :
  Query Transformation 을 하려면 반드시 unnesting 이나 merge 힌트를 써야 하는지 질문이 들어왔다. 대부분의 경우 Query Transformer 가 자동으로 변환과정을 수행해준다. 하지만 이것이 가끔 제대로 수행이 안될수 있으므로 이럴경우에만 명시적으로 힌트를 사용하는것이 바람직하다.  

Posted by extremedb
,

튜닝 컨설팅을 하다보면 개발자들이 서브쿼리에 대하여 많은 관심을 보이며 또한 자주 사용하곤 한다.
하지만 정작 튜닝관점및  외형적인 관점에서 서브쿼리에 대하여 정의를 내릴수 있는 사람은 많지않다.  
오늘은 서브쿼리에 대하여 정의를 내려보자.

외형적관점에서 서브쿼리의 종류는 2가지 밖에 없다.

1.Non Corelate 서브쿼리  : (서브쿼리 내에 서브쿼리와 메인쿼리의 조인절이 없음)
2.Corelate 서브쿼리: (서브쿼리 내에 서브쿼리와 메인쿼리의 조인절이 있음)
그렇다면 튜닝관점에서 서브쿼리를 어떻게 분류해야 할까?
튜닝관점의 서브쿼리는 아래처럼 5가지로 분류할수 있다.

튜닝관점의 서브쿼리의 분류

1.Unnesting 서브쿼리 : 옵티마이져가 서브쿼리를 조인으로 변형시킴
    1)서브쿼리를 조인으로 바꾸는 방식 (일반적으로 서브쿼리의 테이블이 Driving 이된다.)
    2)오라클은 서브쿼리를 인라인뷰로 바꾸고 서브쿼리 집합이 Distinct 하지 않을경우 Sort Unique 나
        Hash Unique 작업을 추가로 진행한다.
      이는 메인쿼리의 건수를 보존하기 위해서 이다.
    3) 힌트 :유도 힌트 : /*+ unnest */
                               (서브쿼리에 사용하거나 메인쿼리에서 쿼리블럭 힌트(qb_name)를 사용하여야 한다.)
                방지 힌트 : /*+ no_unnest */ (서브쿼리에 사용)
            
2.Semi Join/Anti Join : 옵티마이져가 서브쿼리를 조인으로 변형시킴
    1)서브쿼리를 조인으로 바꾸는 방식 (일반적으로 서브쿼리의 테이블은 Driving 이 되지 못한다.)
    2)이방식은 버젼 8i 부터 사용되었으며 아래에 소개되는  Filter SubQuery 를 발전시킨 형태이다.
       메인쿼리의 값을 상수로 받은다음 서브쿼리쪽 테이블에서 만족하는 건이 하나라도 있으면 다음건으로
       넘어간다.(Filter 처리와 원리가 같음.)
       Unnesting 서브쿼리와 Semi Join 을 같이 보는 사람들이 있는데 이건 잘못된것이다.
       오라클에서 Unnesting 개념과 Semi Join 을 같이 보면 안된다.
       물론 10053 보고서에는 둘다 su(sub query unnesting) 로 나오긴 한다.
       필자는 10053 보고서도 마음에 들지 않는다.
       굳이 같이사용할려고 한다면 "SubQuery Flattening" 이라고 해야 한다.
       이렇게 해야만 Unnesting 과 Semi Join이 헷갈리지 않는다.    
    3)세미조인과 안티조인의 차이는 긍정형 (EXISTS 혹은 IN) 은 세미조인으로 풀리고
       부정형 (NOT EXISTS 혹은 NOT IN) 등은 안티조인으로 풀린다.
       물론 안티조인이 되려면 조인되는 양측의 컬럼이 NOT NULL 이거나 WHERE 절에
       NOT NULL 을 명시해야 한다.
     4) 힌트 :유도 힌트 : use_nl 혹은 use_hash 혹은 use_merge (서브쿼리에 사용 해야한다.)
                                 10g 이전버전에서는 세미조인및 안티조인 힌트가 따로 있음.
                 방지 힌트 : /*+ no_unnest */ --> 특이하게도 방지힌트는 unnest 형식과 같다.


3.Access 서브쿼리 : 쿼리변형이 없음
    1)흔히말하는 제공자 서브쿼리임.(서브쿼리부터 풀려서 메인쿼리에 값이 제공된다.)
    2)위의 1번 2번과 다르게 Plan 에 메인쿼리와 서브쿼리의 Join 이 없다.
    3)힌트: 특별한 힌트없음.
               다만  /*+ no_unnest */ 를 사용하여 SubQuery Flattening 을 방지하고
               서브쿼리로부터 제공되는 메인쿼리의 컬럼에 인덱스가 생성되어 있으면됨.
    4) 주의사항: corelate 서브쿼리는 제공자 서브쿼리가 될수 없음.

4.Filter 서브쿼리 : 쿼리변형이 없음
    1)흔히 말하는 확인자 서브쿼리임.(메인쿼리의 값을 제공받아 서브쿼리에서 체크하는 방식임)
    2)위의 1번 2번과 다르게 Plan 에 메인쿼리와 서브쿼리의 Join 이 없고 Filter 로 나온다.
    3)Filter SubQuery 의 특징은 메인쿼리의 From 절에 있는 모든 테이블을 엑세스후에 가장마지막에
      서브쿼리가 실행된다는 것이다.
    4) 힌트: 특별한 힌트없음.
                다만  /*+ no_unnest */ 를 사용하여 SubQuery Flattening 을 방지하고
                메인쿼리로부터 제공되는 서브쿼리의 조인컬럼에 인덱스가 생성되어 있으면됨.

5.Early Filter 서브쿼리 : 쿼리변형이 없음
    1)Filter SubQuery 와 같은 방식이지만 서브쿼리를 최대한 먼저 실행하여 데이터를 걸러낸다.
    2)힌트 : 메인쿼리에 push_subq 힌트사용 (10g 이후부터는 서브쿼리에 힌트사용해야함)
    3)주의사항: 많은 튜닝책에서 "Push_subq 힌트를 사용하면 제공자 서브쿼리를 유도한다" 라고
                     되어 있으나 이는 잘못된 것이다.
                     push_subq 힌트를 사용하면 확인자 서브쿼리(Filter 서브쿼리)를 유도하지만 최대한
                     먼저 수행된다.


오늘은 5가지 중에서 Query Transformation(쿼리변형)과 관련이 있는 Unnesting 서브쿼리 와
Semi Join/Anti Join 에 대해서 이야기 할것이다.
그럼 1번과 2번을 스크립트로 살펴보자.
 
1.Unnesting 서브쿼리 : (원본쿼리)

select small_vc

from    t1

where   n2 between 10 and 200

and     exists  (select  /*+ unnest */ null

                   from   t2

                  where   t2.no_indexed_column = t1.n1

                    and   t2.n2 = 15) ;      


옵티마이져는 위의 쿼리를 아래의 쿼리로 변형시킨다.(아래의 힌트는 이해를 돕기위한 것임)

select /*+ leading(t2 t1) */ t1.small_vc

from    t1,
        (select distinct t2.no_indexed_column  
           from t2
          where t2.n2 = 15 ) t2

where   t1.n2 between 10 and 200
  and   t1.n1 = t2.no_indexed_column



          

------------------------------------------------------------------------

| Id  | Operation                      | Name  | Rows  | Bytes | Cost  |

------------------------------------------------------------------------

|   0 | SELECT STATEMENT               |       |     1 |    26 |    24 |

|*  1 |  TABLE ACCESS BY INDEX ROWID   | T1    |     1 |    19 |     2 |

|   2 |   NESTED LOOPS                 |       |     1 |    26 |    24 |

|   3 |    SORT UNIQUE                 |       |     1 |     7 |     2 |

|   4 |     TABLE ACCESS BY INDEX ROWID| T2    |     1 |     7 |     2 |

|*  5 |      INDEX RANGE SCAN          | T2_N2 |     1 |       |     1 |

|*  6 |    INDEX RANGE SCAN            | T1_PK |     1 |       |     1 |

------------------------------------------------------------------------

위의 plan 에서 보는 바와 같이 서브쿼리가 Driving 집합이 되었으며 메인쿼리의 집합을 보존하기 위해
Distinct 작업(Sort Unique) 를 실행 하였다.
또한 옵티마이져는 서브쿼리내에 조인되는 컬럼에 인덱스도 없고 선택성도 좋지않으므로 Semi Join 보다는 Unnesting 서브쿼리를 선호한다.


2.Semi Join /Anti Join : (원본쿼리)

select small_vc

from    t1

where   n2 between 10 and 200

and     exists  (select  /*+ use_nl(t1 t2) */ null

                   from   t2

                  where   t2.Indexed_column = t1.n1

                    and   t2.n2 = 15) ;  

옵티마이져는 위의 서브쿼리를 아래의 조인쿼리로 변형시킨다..(아래의 힌트는 이해를 돕기위한 것임)
아래 조인절의 (s) 는 세미조인을 의미한다. (세미조인은 메인쿼리의 건수를 변화시키지 않는다)

select  /*+ leading(t1 t2) */
        t1.small_vc

from    t1,
        t2

where   t1.n1 = t2.Indexed_column(s)
  and   t1.
n2 between 10 and 200
  and   t2.n2 = 15

 

             

------------------------------------------------------------------------

| Id  | Operation                      | Name  | Rows  | Bytes | Cost  |

------------------------------------------------------------------------

|   0 | SELECT STATEMENT               |       |     1 |    23 |     3 |

|   1 |  NESTED LOOPS SEMI             |       |     1 |    23 |     3 |

|*  2 |   TABLE ACCESS BY INDEX ROWID  | T1    |     1 |    19 |     2 |

|*  3 |    INDEX RANGE SCAN            | T1_PK |     1 |       |     1 |

|*  4 |   INDEX RANGE SCAN             | T2_N2 |     1 |     4 |     1 |

------------------------------------------------------------------------


위의 plan 에서 보는 바와 같이 서브쿼리의 조인되는 컬럼에 인덱스가 있고 선택성이 좋으면 옵티마이져는
세미조인을 선택한다.
세미조인의 특징은
1)Plan 에 Join 정보가 나오며(위의 경우 Nested Loop) --> 바로 이부분이 Unnesting 서브쿼리와 다르다.
2)Driving 이 되지못하고
3)Filter 서브쿼리처럼 한건만 만족하면 바로 다음건으로 넘어가는 조인이라고 했다.
그렇다면 Filter 서브쿼리와 다른점은?
세미조인과 Filter 서브쿼리의 다른점은 세미조인은 필요에 따라서 Hash Join/Sort Merge Join/Nested Loop Join 등을 골라서 사용할수 있다는 점이 다르다.
Filter 서브쿼리는 선택할수 있는 옵션이 없다.

결론:
오늘은 튜닝관점의 서브쿼리의 5가지 종류 중에서 Unnesting 서브쿼리 와 Semi Join /Anti Join 에 대하여 알아보았다.
서브쿼리의 사용법및 서브쿼리 관련 힌트는 서브쿼리의 이해 뿐만아니라 Query Transformation (쿼리변형)을
이해하기 위해서도 반드시 숙지하여야 한다.
다음 시간에는 쿼리변형이 없는 서브쿼리의 3가지 유형(3,4,5번)에 대하여 심도깊게 이야기 할것이다.

Reference :
1)Query Optimization in Oracle Database10g Release 2(White Paper)
2)COST BASED QUERY TRANSFORMATIONS CONCEPT
   AND ANALYSIS USING 10053 TRACE(Riyaj Shamsudeen)
3)Cost Based Oracle Fundamentals(Jonathan Lewis) with Blog (http://jonathanlewis.wordpress.com)

Posted by extremedb
,