'분포도'에 해당되는 글 1건

  1. 2010.10.25 Cardinality Feedback이 위험할 때 (10)

부제: Cardinality Feed Back의 개념과 사용예제

이번 글은 난이도가 높으므로 익숙하지 않은 사람은 Cardinality Feedback의 개념 정도만 이해하기 바란다. 물론 이 블로그를 꾸준히 구독한 독자라면 어려움 없이 볼 수 있다.

 

현재 많은 시스템이 Oracle11g로 옮겨가고 있다. 11g는 새로운 기능이 많이 추가되었다. 하지만 새롭고 좋은 기능이라도 완벽하지 못하면 문제가 될 수 있다. 오늘은 11g의 새 기능 때문에 성능문제가 발생하는 경우를 소개한다.

시스템이 운영 중에 있을 때 가장 곤욕스러운 경우 중 하나는 SQL의 실행계획이 갑자기 바뀌어 성능이 나빠지는 것이다. SQL과 인덱스 그리고 통계정보가 모두 바뀌지 않아도 실행계획은 바뀔 수 있다. 예를 들면 Oracle11g의 기능인 Cardinality Feedback을 사용함으로 해서 얼마든지 실행계획이 바뀔 수 있는 것이다. 이번 시간에는 실행계획이 변경되는 원인 중 하나인 Cardinality Feedback 의 개념과 작동방식에 대해 알아보고 이것이 언제 문제가 되는지 분석해 보자. 이번에 소개할 예제는 종합적이다. Cardinality Feedback + Cost Based Query Transformation + Bloom Filter가 결합된 것이다. 이를 놓친다면 이들이 어떻게 결합되는지 알 수 없을 뿐만 아니라 성능이 악화된 원인을 파악할 수 없다.

 

예측, 실행, 비교, 그리고 전달

소 잃고 외양간 고친다는 말이 있다. 이미 늦었다는 이야기 이지만 좋은 말로 바꾸면 실수를 다시 하지 않겠다는 의지이다. cardinality feedback(이후 CF)도 이와 비슷한 개념이다. 예를 들어 col1 = ‘1’ 이라는 조건으로 filter되면 백만 건이 return된다고 옵티마이져가 예측해서 full table scan을 했다. 하지만 예측과 달리 실행결과가 100건이 나왔다면? 해당 SQL을 다시 실행할 때는 full table scan보다는 index scan이 유리할 것이다. 그런데 같은 SQL을 두 번째 실행할 때 "실제로는 백만 건이 아니라 100건 뿐이야"라는 정보를 옵티마이져에게 알려주는 전달자가 필요하다. 그 전달자가 바로 CF이다. CF가 없으면 결과가 100건 임에도 SQL을 실행 할 때마다 full table scan을 반복할 것이다. 결국 CF는 악성 실행계획을 올바로 수정하는 것이 목적이며 매우 유용한 기능임을 알 수 있다. CF의 단점은 최초에 한번은 full table scan이 필요하다는 것이다. 왜냐하면 실행해서 결과가 나와야만 실제 분포도(건수)를 알 수 있기 때문이다.

 

CF는 어떻게 실행되나?

CF는 같은 SQL을 두 번 이상 실행했을 때 적용된다. 그 이유는 아래의 CF 적용순서를 보면 알 수 있다.

1. 최초의 실행계획을 작성할 때(Hard Parsing 시에) 예측 분포도가 계산된다.

2. SQL이 실행된다. 한번은 실행 해봐야 예측 분포도와 실제 분포도를 비교할 수 있다.

3. 예측 분포도와 실제 분포도의 값이 차이가 크다면 실제 분포도를 저장한다.

4. 두 번째 실행될 때 CF에 의해 힌트의 형태로 옵티마이져에게 전달되어 실제 분포도가 적용된다. 이때 분포도뿐만 아니라 실행계획이 바뀔 수 있다. 두 번째 이후로 실행될 때는 CF가 계속 적용된다.

 

CF를 발생시켜보자

실행환경 :Oracle 11.2.0.1

 

ALTER SYSTEM FLUSH SHARED_POOL;

ALTER SESSION SET "_OPTIMIZER_USE_FEEDBACK" = TRUE; -- CF를 활성화 한다. default true이다.

 

SELECT /*+ GATHER_PLAN_STATISTICS LEADING(c)  */

       c.cust_id, c.cust_first_name, c.cust_last_name,

       s.prod_cnt, s.channel_cnt, s.tot_amt

  FROM customers c,

       (SELECT   s.cust_id,

                 COUNT (DISTINCT s.prod_id) AS prod_cnt,

                 COUNT (DISTINCT s.channel_id) AS channel_cnt,

                 SUM (s.amount_sold) AS tot_amt

            FROM sales s

        GROUP BY s.cust_id) s

 WHERE c.cust_year_of_birth = 1987

   AND s.cust_id = c.cust_id ;

 

----------------------------------------------------------------------------------------------------------------

| Id  | Operation                      | Name              | E-Rows | A-Rows |   A-Time   | Buffers | Used-Mem |

----------------------------------------------------------------------------------------------------------------

|   0 | SELECT STATEMENT               |                   |        |     23 |00:00:00.15 |    5075 |          |

|*  1 |  HASH JOIN                     |                   |    162 |     23 |00:00:00.15 |    5075 | 1215K (0)|

|   2 |   JOIN FILTER CREATE           | :BF0000           |    162 |    151 |00:00:00.01 |     148 |          |

|   3 |    TABLE ACCESS BY INDEX ROWID | CUSTOMERS         |    162 |    151 |00:00:00.01 |     148 |          |

|   4 |     BITMAP CONVERSION TO ROWIDS|                   |        |    151 |00:00:00.01 |       2 |          |

|*  5 |      BITMAP INDEX SINGLE VALUE | CUSTOMERS_YOB_BIX |        |      1 |00:00:00.01 |       2 |          |

|   6 |   VIEW                         |                   |   7059 |     55 |00:00:00.15 |    4927 |          |

|   7 |    SORT GROUP BY               |                   |   7059 |     55 |00:00:00.15 |    4927 |88064  (0)|

|   8 |     JOIN FILTER USE            | :BF0000           |    918K|   7979 |00:00:00.12 |    4927 |          |

|   9 |      PARTITION RANGE ALL       |                   |    918K|   7979 |00:00:00.11 |    4927 |          |

|* 10 |       TABLE ACCESS FULL        | SALES             |    918K|   7979 |00:00:00.09 |    4927 |          |

----------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):        

---------------------------------------------------        

   1 - access("S"."CUST_ID"="C"."CUST_ID")               

   5 - access("C"."CUST_YEAR_OF_BIRTH"=1987)               

  10 - filter(SYS_OP_BLOOM_FILTER(:BF0000,"S"."CUST_ID")) --> Bloom Filter 적용     

                

SQL 실행결과 sales 테이블의 예측 분포도는 918K건이며 실제 분포도는 Bloom Filter가 적용되어 7979건이다. 그리고 group by operation(ID 7)의 예측 분포도는 7059건이며 실제 분포도는 55건이다. 예측과 실제의 분포도 차이는 두 경우 모두 100배 이상이다. 따라서 CF가 적용될 것이다. 이와는 반대로 customers 테이블의 예측 분포도와 실제 분포도는 162 152로 크게 다르지 않으므로 CF가 적용되지 않을 것이다. 이제 위의 SQL을 재 실행한다면 CF가 적용되어 실제 분포도가 적용될 것이다.

 

--> CF를 발생시키기 위해 위의 SQL 다시 실행               

                

----------------------------------------------------------------------------------------------------------------

| Id  | Operation                      | Name              | E-Rows | A-Rows |   A-Time   | Buffers | Used-Mem |

----------------------------------------------------------------------------------------------------------------

|   0 | SELECT STATEMENT               |                   |        |     23 |00:00:05.61 |    5075 |          |

|   1 |  SORT GROUP BY                 |                   |     55 |     23 |00:00:05.61 |    5075 |75776  (0)|

|*  2 |   HASH JOIN                    |                   |    270 |   3230 |00:00:05.60 |    5075 | 1201K (0)|

|   3 |    TABLE ACCESS BY INDEX ROWID | CUSTOMERS         |    162 |    151 |00:00:00.01 |     148 |          |

|   4 |     BITMAP CONVERSION TO ROWIDS|                   |        |    151 |00:00:00.01 |       2 |          |

|*  5 |      BITMAP INDEX SINGLE VALUE | CUSTOMERS_YOB_BIX |        |      1 |00:00:00.01 |       2 |          |

|   6 |    PARTITION RANGE ALL         |                   |   7979 |    918K|00:00:02.82 |    4927 |          |

|   7 |     TABLE ACCESS FULL          | SALES             |   7979 |    918K|00:00:00.98 |    4927 |          |

----------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):               

---------------------------------------------------

   2 - access("S"."CUST_ID"="C"."CUST_ID")

   5 - access("C"."CUST_YEAR_OF_BIRTH"=1987)

 

Note

-----

   - cardinality feedback used for this statement --> CF가 발생되었음을 나타냄.

 

두 번째 실행 할 때 CF가 적용되어 예측 분포도가 7979로 바뀌었고 group by 분포도는 55건으로 바뀌었다. 이에 따라 실행계획도 바뀌었다. CF에 의해서 쿼리변환(Complex View Merging)이 발생된 것이다. 그리고 note CF가 적용되었다고 친절히 설명된다.

 

이제 더 자세한 분석을 위하여 10053 Trace의 내용을 보자. 두 번째 실행된 SQL 10053 Trace에 따르면 쿼리변환전의 SQL은 다음과 같다.

 

SELECT /*+ LEADING (C) */

       c.cust_id, c.cust_first_name, c.cust_last_name,

       s.prod_cnt, s.channel_cnt, s.tot_amt tot_amt

  FROM tlo.customers c,

       (SELECT   /*+ OPT_ESTIMATE (GROUP_BY ROWS=55.000000 ) OPT_ESTIMATE (TABLE S ROWS=7979.000000 ) */

                 s.cust_id cust_id, COUNT (DISTINCT s.prod_id) prod_cnt,

                 COUNT (DISTINCT s.channel_id) channel_cnt, SUM (s.amount_sold) tot_amt

            FROM tlo.sales s

        GROUP BY s.cust_id) s

 WHERE c.cust_year_of_birth = 1987

AND s.cust_id = c.cust_id ;

 

CF에 의해서 OPT_ESTIMATE 힌트가 적용되었다. 실제 건수로 적용하는 것이므로 일견 문제가 없어 보인다. 하지만 쿼리변환과정(Complex View Merging)을 거치면 문제가 생긴다. 10053 Trace에서 나타난 쿼리변환 후의 SQL은 다음과 같다.

 

SELECT   /*+ OPT_ESTIMATE (GROUP_BY ROWS=55.000000 ) LEADING (C) OPT_ESTIMATE (TABLE S ROWS=7979.000000 ) */

         c.cust_id cust_id, c.cust_first_name cust_first_name,

         c.cust_last_name cust_last_name, COUNT (DISTINCT s.prod_id) prod_cnt,

         COUNT (DISTINCT s.channel_id) channel_cnt, SUM (s.amount_sold) tot_amt

    FROM tlo.customers c, tlo.sales s

   WHERE c.cust_year_of_birth = 1987

AND s.cust_id = c.cust_id

GROUP BY s.cust_id, c.ROWID, c.cust_last_name, c.cust_first_name, c.cust_id ;

 

CF의 문제점은?

위의 SQL은 두 가지 문제점이 있다. 두 문제 모두 쿼리변환에 의해 발생된다. 첫 번째 문제는 Bloom Filter와 관련된 것이다. CF의 영향으로 원본 SQL에 존재했던 Group By (Complex View)가 사라졌다. 뷰가 없어짐으로써 Bloom Filter가 적용되지 않는다. Filter가 사라졌음에도 불구하고 Filter가 존재했던 Cardinality 7979를 적용해 버렸다. 이에 따라 CF를 적용했음에도 7979건과 실제건수인 91 8천 건과는 엄청난 차이가 나고 말았다. Bloom Filter가 사라질 때는 CF를 적용하면 안 된다는 이야기이다. 비유하자면 Filter가 없는데도 불구하고 Filter가 존재할 때의 건수를 적용시킨 것이다.

 

두 번째 문제는 쿼리변환 후 힌트의 상속과 관련된다. 쿼리변환전의 CF의 의한 힌트를 보면 Group By된 뷰의 건수는 55건이다. 그런데 이 힌트는 오직 sales 테이블에 대한 것이다. 그런데 쿼리변환후의 힌트를 보면 그대로 55건이 적용되어 되어버렸다. Group by가 외부로 빠져 나옴으로 해서 GROUP_BY ROWS는 전체건수와 마찬가지가 되어버렸다. sales 테이블의 Group By건수는 55건이 맞다. 하지만 쿼리변환 때문에 조인 후에 Group By 하게 된다면 cardinality를 다시 계산해야 한다. 조인이 없는 테이블의 Group By건수와 조인후의 Group By건수가 어떻게 같을 수 있나?

 

두 가지의 문제점은 Cost를 계산할 때 그대로 적용되어 버린다. 10053 trace를 보자.

 

Access path analysis for SALES

***************************************

SINGLE TABLE ACCESS PATH

  Single Table Cardinality Estimation for SALES[S]

  Table: SALES  Alias: S

    Card: Original: 918843.000000    >> Single Tab Card adjusted from:918843.000000 to:7979.000000

  Rounded: 7979  Computed: 7979.00  Non Adjusted: 918843.00

  Access Path: TableScan

    Cost:  1328.68  Resp: 1328.68  Degree: 0

      Cost_io: 1321.00  Cost_cpu: 155262306

      Resp_io: 1321.00  Resp_cpu: 155262306

 

Bloom Filter가 없음에도 불구하고 Sales 테이블의 건수(Cardinality) 7979로 적용되어 버렸다. 이제 Group By가 적용된 건수를 보자.

 

GROUP BY cardinality:  270.000000, TABLE cardinality:  270.000000

>> Query Blk Card adjusted from 270.000000  to: 55.000000

    SORT ressource         Sort statistics

      Sort width:         583 Area size:      510976 Max Area size:   102340608

      Degree:               1

      Blocks to Sort: 3 Row size:     69 Total Rows:            270

      Initial runs:   1 Merge passes:  0 IO Cost / pass:          0

      Total IO sort cost: 0      Total CPU sort cost: 20302068

      Total Temp space used: 0


Group By Cardinality와 관련된 Trace 내용이다. 여기서도 잘못된 Group By건수인 55를 적용시키고 있다. 조인 후에 Group By할 때는 Cardinality를 다시 계산해야 옳다. 이래서는 제대로 된 Cost가 나올 수 없다. 여기에 밝혀진 문제점은 SQL 하나에서 나온 것이므로 실전에서는 두 가지 문제뿐만 아니라 더 많을 것이다. 물론 옵티마이져가 모든 경우에 완벽할 수는 없다.


해결책
CF
문제의 해결방법을 생각해보자. 갑자기 실행계획이 바뀌어 성능문제가 발생했을 때 dbms_xplan.display_cursor의 note나 10053 Trace의 실행계획 부분을 보면 CF가 적용되었는지 아닌지 알 수 있다. 만약 CF가 적용되었다면 일단 의심해보아야 한다. 아래는 10053 trace의 실행계획 부분이다.

-----------------------------------------------------------+------------------------

| Id  | Operation                       | Name             | Rows  | Bytes | Cost  |

-----------------------------------------------------------+------------------------

| 0   | SELECT STATEMENT                |                  |       |       |  1368 |

| 1   |  SORT GROUP BY                  |                  |    55 |  2915 |  1368 |

| 2   |   HASH JOIN                     |                  |   270 |   14K |  1367 |

| 3   |    TABLE ACCESS BY INDEX ROWID  | CUSTOMERS        |   162 |  5832 |    38 |

| 4   |     BITMAP CONVERSION TO ROWIDS |                  |       |       |       |

| 5   |      BITMAP INDEX SINGLE VALUE  | CUSTOMERS_YOB_BIX|       |       |       |

| 6   |    PARTITION RANGE ALL          |                  |  7979 |  132K |  1329 |

| 7   |     TABLE ACCESS FULL           | SALES            |  7979 |  132K |  1329 |

-----------------------------------------------------------+------------------------

Predicate Information:

----------------------

2 - access("S"."CUST_ID"="C"."CUST_ID")

5 - access("C"."CUST_YEAR_OF_BIRTH"=1987)

 

Content of other_xml column

===========================

nodeid/pflags: 7 17nodeid/pflags: 6 17  cardinality_feedback: yes --> CF가 적용됨

...이후 생략


만약 CF가 문제가 된다면 해당 SQL을 시작하기 전에 세션단위로 _optimizer_use_feedback = false를 적용하거나 opt_param 힌트를 사용하면 된다. 이렇게 하면 CF가 방지되어 쿼리변환의 원인이 제거된다. 따라서 Bloom Filter도 보존할 수 있다. 또 다른 방법은 인라인뷰에 no_merge 힌트를 적용하여 쿼리변환을 방지하면 문제는 해결된다. 이 두 가지 방법은 결국 쿼리변환을 방지하는 것이다.

 

결론

CF란 건수를 예측하고, 실행해서 실제건수와 예측건수를 비교하여 차이가 많다면 다음 번에 실행할 때 옵티마이져에게 실제건수를 전달해주는 역할을 한다. CF의 개념을 정리 했으므로 이제 큰 그림을 그려보자. 위의 예제에서 성능이 악화된 직접적인 이유는 Bloom Filter가 사라졌기 때문이다. 하지만 그렇게 된 이유는 쿼리변환 때문이며 쿼리변환의 이유는 CF 때문이다. 직접적인 원인을 찾았다고 해도 포기해선 안 된다. 꼬리에 꼬리를 무는 원인이 있을 수 있기 때문이다. 이를 도식화 하면 다음과 같다.

사용자 삽입 이미지


옵티마이져의 설계관점에서 개선해야 될 사항을 논의 해보자. 옵티마이져가 CBQT를 고려할 때는 두 가지의 경우로 판단한다. 쿼리변환을 적용하기 전(Iteration 1) Cost와 적용 후(Iteration 2) Cost를 비교해야 되기 때문이다. 쿼리변환전의 Cost를 구할 때는 CF를 적용시키고 반대로 쿼리변환 후에는 CF를 적용하지 않는 것이 더 좋은 Cost를 구할 수 있다. 왜냐하면 비록 답이 같다고 하더라도 형태가 전혀 다른 SQL에 대해 CF를 적용시킬 이유는 없기 때문이다. 물론 이렇게 해도 여전히 문제가 될 수는 있다. 하지만 문제의 발생확률은 많이 줄어들지 않겠는가?

 


Posted by extremedb

댓글을 달아 주세요

  1. 윤상원 2010.10.25 16:15  댓글주소  수정/삭제  댓글쓰기

    항상 좋은 정보 감사합니다.
    글을 읽고 궁금한 점이 있어 이렇게 질문을 남깁니다.
    bind 변수를 사용할 경우는 Cardinality Feedback이 적용되지 않나요?
    bind 변수를 사용할 경우는 실행할 때마다 결과가 달라지므로 Cardinality Feedback이 적용되기 어려울꺼 같은데요.
    bind 변수를 사용할 경우는 Adaptive Cursor Sharing가 적용되는 것이고 상수를 사용할 경우는
    Cardinality Feedback이 적용되는 것인가요?
    답변 부탁드립니다~

    • Favicon of https://scidb.tistory.com BlogIcon extremedb 2010.10.25 18:09 신고  댓글주소  수정/삭제

      상수를 변수로 바꾸어 테스트 해도 똑같이 cf가 발생합니다.
      하지만 변수값이 바뀌었을 때는 좀더 깊은 연구가 필요합니다.
      감사합니다.

  2. salvation 2010.10.25 16:15  댓글주소  수정/삭제  댓글쓰기

    글 시작할때 어렵다고 하셨는데 전혀 어렵지않으면 어느정도 수준인가요? 자랑이 아니라 정말궁금...

    • Favicon of https://scidb.tistory.com BlogIcon extremedb 2010.10.26 00:05 신고  댓글주소  수정/삭제

      1.CF
      2.Query Transformation
      3.Bloom Filter

      1,2,3 을 다 안다면 어렵지 않습니다.
      만약 컨설턴트라면 수준이 높다고 할 수 없지만
      DBA라면 옵티마이져를 어느정도 아시는 분이라고 할 수 있습니다. 즉 개발자, DBA, 컨설턴트는 기대치가 다르므로 다르게 판단되어야 할 것 같습니다.

    • 혈기린 2010.10.26 15:24  댓글주소  수정/삭제

      컨설턴트가 될려면 어느정도의 수준이 되어야 할까요?
      멀고먼 길이네요 -.-;;

    • Favicon of https://scidb.tistory.com BlogIcon extremedb 2010.10.26 19:16 신고  댓글주소  수정/삭제

      어려운 질문입니다.
      기술은 기본만 되어 있다면 가능합니다. 제가 컨설팅을 시작할 당시(지금도 마찬가지 이지만)는 실력이 좋지 않았습니다. 실력이란 목표가 있으면 따라 옵니다.
      구체적인 목표가 있어야 훌륭한 컨설턴트가 될 것 같습니다.

      많은 분들이 열정을 이야기 하시는데 열정은 불꽃 같은 것이라 사그라 들 수 있습니다. 큰 목표하나를 세우시고 세부적인 목표를 세우신다면 좋은 성과가 있을것 입니다. 큰 목표가 40 이나 50세에 뭘 하고 있을건지 에 대한 대답이라면 세부적인 목표는 큰꿈을 이루기 위해 이번주에 할일이 무엇인지를 묻는것 입니다. 목표가 세워지면 열정은 따라 옵니다. 도움 되셨나요?

    • 혈기린 2010.10.27 16:02  댓글주소  수정/삭제

      조언 감사 드립니다
      목표를 세워서 열씨미 노력해야겠네요 ^^

  3. salvation 2010.10.25 20:49  댓글주소  수정/삭제  댓글쓰기

    답변 감사합니다. 위의 댓글은 갤럭시S로 쓴겁니다. ㅎㅎ
    저는 개발자도, DBA도, 컨설턴트도 아닌... 어중이 떠중이 입니다.
    저의 수준에 의심이 들어 질문을 던진 것 이였습니다.

    상수를 변수로 바꾸었을때에 CF가 발생한다 말씀 하셨는데..
    바인드 피킹이 off인 상태에서는 발생하지 않을것으로 보이는데..
    바인드 피킹이 on 상태라면 결국 CF라는게 결국 어느 한범주에 속할거 같다는 생각이 듭니다.
    Adaptive Cursor Sharing, CF 이런게 결국 어느 한 범주에 속하는 것이 아닐까요?
    말 그대로 logical optimizer라 하면 너무 큰 범주구요..

    • Favicon of https://scidb.tistory.com BlogIcon extremedb 2010.10.26 01:01 신고  댓글주소  수정/삭제

      Adaptive Cursor Sharing, CF, Dynamic Sampling 등은 Physical 옵티마이져를 보완합니다. SQl Plan Baseline, SQL Profile, Stored OutLine 이놈들은 실행계획을 고정시키는 놈들입니다.

      옵티마이져의 기능이라고 볼 수도 있겠지만 옵티마이져의 실수를 막아주는 모듈이라고 보는 것이 더 정확합니다. 이 모든 것은 옵티마이져 서포터즈들 입니다. 즉 옵티마이져는 Logicl + Physical 이 존재하는 상태이지만 옵티마이져가 완벽하지 못하므로 이를 보완하는 것들 입니다. 하지만 아이러니 하게도 서포터즈들이 문제를 일으킬 수 도 있다는 겁니다.^^

      위의 놈들 중에서 11g의 SQl Plan Baseline이 가장 강력합니다. Adaptive Cursor Sharing, CF, Dynamic Sampling 등이 실행계획을 변경시킬 수 있지만 SQl Plan Baseline이라는 최후의 보루를 두어서 안심할 수 있을것입니다.

  4. ExtraOdinary 2010.11.03 15:52  댓글주소  수정/삭제  댓글쓰기

    아직 11g로 운영중인 사이트가 별로 없었는데, 동규님 블로그를 통해 11g의 좋은 기능들과 함정(?)들을 미리 이해할 수 있어 항상 감사합니다.