필자가 제안한 SQL 튜닝방법론을 읽어 보았다면 다음을 기억할 것이다.


“SQL
튜닝방법론은 온라인 SQL 90% 만 해결할 수 있으며,
나머지 10%는 그때 그때 마다 다르게(On the fly 모드) 처리된다. 또한 그것들은 책이나 매뉴얼에 나와있지 않기 때문에 경험치 이거나 실험과 연구의 결과로 알아내는 것들이다.”

이번 글은 방법론에서 다룰 수 없는, 나머지 10%에 해당하는 경험치와 연구의 결과이다.


분석함수의 나머지 10%

오늘은 SQL 튜닝방법론에서 언급한 나머지 10%를 만났을 때 어떻게 해야 하는지 알아보자. 이번 글이 분석함수의 실행계획 시리즈의 마지막이다. 12에서 분석함수의 실행계획에 대해서 알아보았다. 하지만 두 개의 글로도 분석함수와 관련된 성능이슈를 모두 알 수는 없다. 왜냐하면 분석함수와 관련된 세밀한 튜닝포인트가 더 있기 때문이다. 이번에 다루게 될 실전 튜닝은 단순히 적절한 인덱스를 생성하여 비효율을 없애는 것이 아니다. 적절한 인덱스를 생성하는 것은 1부와 2부만 이해해도 충분하며, 이 글에서는 1부와 2부에서 언급하지 않은 것들을 설명하게 된다. 따라서 이 글에서 제시된 문제를 해결하지 못하면 분석함수를 튜닝 할 수 없는 경우를 많이 만날 것이다.

 

퀴즈는 SQL 두 개이며, 5가지 비효율을 개선해야 한다

이번에는 실전에서 발생할 수 있는 비효율에 대해서 두 가지 관점으로 논의한다. 분석함수를 사용할 때, 실행계획을 보고 비효율을 잡아내는 능력을 향상시키고, 실제로 SQL튜닝을 해보는 것이다. 반드시 문제를 직접 풀어보기 바란다. 당신이 튜너의 입장이 되어, 성능이 좋지 않은 SQL을 두 개 받았다고 가정하고 튜닝문제를 풀어보기 바란다. 두 가지 SQL 중 하나는 쉽고 나머지 하나는 어렵다. 두 개의 SQL에는 5가지의 튜닝 포인트가 있다. 각각의 포인트는 20점이며 5가지를 모두 맞추는 경우는 100점이 된다. 채점 시 중요한 점은 SQL을 맞추는 것이 아니라 비효율을 몇 개 잡아내었는지, 또한 각각의 비효율을 개선시킬 수 있는 방법은 몇 개나 생각했는지를 채점하는 것이다. 

  

이제 실습을 위한 테이블과 인덱스를 생성하자.

CREATE TABLE SALES_T NOLOGGING AS SELECT * FROM SALES;

 

ALTER TABLE SALES_T ADD CONSTRAINT PK_SALES_T

PRIMARY KEY (PROD_ID, CUST_ID, CHANNEL_ID, TIME_ID) USING INDEX;

 

개발자가 작성한 문제의 SQL 1

 

SELECT *

  FROM ( SELECT /*+  INDEX(T PK_SALES_T) */ PROD_ID, CUST_ID, TIME_ID, CHANNEL_ID, AMOUNT_SOLD,

                MAX(TIME_ID) OVER( PARTITION BY CUST_ID ,CHANNEL_ID ) AS MAX_TIME

           FROM SALES_T T

          WHERE PROD_ID = 30 )

 WHERE TIME_ID = MAX_TIME;

 

업무설명 : 상품번호 30인 데이터에 대하여 고객별, 채널 별로 가장 최근의 판매량을 나타내시오.

             단 고객별, 채널별로 가장 최근의 데이터는 2건 이상일 수 있음.

-----------------------------------------------------------------------------------------------

| Id  | Operation                     | Name       | A-Rows |   A-Time   | Buffers | Used-Mem |

-----------------------------------------------------------------------------------------------

|   0 | SELECT STATEMENT              |            |  12649 |00:00:00.31 |   28337 |          |

|*  1 |  VIEW                         |            |  12649 |00:00:00.31 |   28337 |          |

|   2 |   WINDOW BUFFER               |            |  29282 |00:00:00.27 |   28337 | 1495K (0)|

|   3 |    TABLE ACCESS BY INDEX ROWID| SALES_T    |  29282 |00:00:00.17 |   28337 |          |

|*  4 |     INDEX RANGE SCAN          | PK_SALES_T |  29282 |00:00:00.03 |     118 |          |

-----------------------------------------------------------------------------------------------

 

Predicate Information (identified by operation id):

---------------------------------------------------

   1 - filter("TIME_ID"="MAX_TIME")

   4 - access("PROD_ID"=30)

 

WHERE 절에 TIME_ID = MAX_TIME 이 존재하는 이유는 고객별, 채널별로 MAX(TIME_ID)에 해당하는 데이터가 두건 이상일 수 있기 때문이다. 이런 경우는 자주 발생한다. 이해를 돕기 위해 비슷한 예를 들어보자. 부서별로 최대급여를 받는 사람들을 출력하고자 할 때, 1번 부서의 최대급여는 1억 원이라고 하자. 그런데 그 부서에서 1억 원(최대급여)을 받는 사람은 강호동, 유재석 둘이라는 이야기 이다.

 

위의 SQL은 답이 정확하다. 하지만 성능은 비효율이 있어서 별로 신통치 못하다. 이제 문제를 보자. SQL의 비효율을 개선하는 것이 문제이다.

 

문제1) 위의 SQL 에서 성능상 문제점을 발견하고 개선하시오. 문제점은 두 가지(분석함수의 관점, 일반적인 SQL튜닝의 관점) 이다. 단 인덱스를 추가로 생성하거나 변경해서는 안 된다.

아래처럼 정답을 제시하면 된다.

 

문제1의 비효율 1 : 구체적인 설명

문제1의 비효율 1의 해결방법 : 구체적인 설명 

문제1의 비효율 1이 해결된 SQL과 실행계획 제시

 

문제1의 비효율 2 : 구체적인 설명

문제1의 비효율 2의 해결방법 : 구체적인 설명 

문제1의 비효율 2이 해결된 SQL과 실행계획 제시

 

이제 실제로 답안을 작성해보자.(답안 Sample)

 

문제1의 비효율 1 : SALES_T 테이블에 Random Access가 불필요하게 많이 발생한다. 12649 번만 테이블로 액세스 하면 되지만 실제로는 29282 번 액세스함으로써 비효율이 발생되었다.

 

문제1의 비효율 1의 해결방법 : PK인덱스에 AMOUNT_SOLD가 포함되어 있지 않으므로 Select 절에서 AMOUNT_SOLD를 빼면 인덱스만 액세스 하게 됨. 이때 Rowid를 추가로 Select 해야 한다. 이후에 이미 인덱스에서 Filter Rowid로 테이블을 액세스하면 Random Access정확히 12649번 만 시도한다. 아래에 SQL이 있으므로 참조하시오.

 

문제1의 비효율1이 해결된 SQL과 실행계획 제시:

 

SELECT /*+ LEADING(S) USE_NL(S1) */

        S.PROD_ID, S.CUST_ID, S.TIME_ID, S.CHANNEL_ID, S1.AMOUNT_SOLD

  FROM ( SELECT /*+  INDEX(T PK_SALES_T) */ PROD_ID, CUST_ID, TIME_ID, CHANNEL_ID,

                MAX(TIME_ID) OVER( PARTITION BY CUST_ID ,CHANNEL_ID ) AS MAX_TIME,

                ROWID AS RID

           FROM SALES_T T

          WHERE PROD_ID = 30 ) S,

       SALES_T S1

 WHERE S.TIME_ID = S.MAX_TIME

   AND S1.ROWID = S.RID;

  

------------------------------------------------------------------------------------------------------

| Id  | Operation                   | Name       | Starts | A-Rows |   A-Time   | Buffers | Used-Mem |

------------------------------------------------------------------------------------------------------

|   0 | SELECT STATEMENT            |            |      1 |  12649 |00:00:02.72 |   11237 |          |

|   1 |  NESTED LOOPS               |            |      1 |  12649 |00:00:02.72 |   11237 |          |

|*  2 |   VIEW                      |            |      1 |  12649 |00:00:00.18 |     118 |          |

|   3 |    WINDOW BUFFER            |            |      1 |  29282 |00:00:00.13 |     118 | 1432K (0)|

|*  4 |     INDEX RANGE SCAN        | PK_SALES_T |      1 |  29282 |00:00:00.03 |     118 |          |

|   5 |   TABLE ACCESS BY USER ROWID| SALES_T    |  12649 |  12649 |00:00:02.48 |   11119 |          |

------------------------------------------------------------------------------------------------------

 

Predicate Information (identified by operation id):

---------------------------------------------------

   2 - filter("S"."TIME_ID"="S"."MAX_TIME")

   4 - access("PROD_ID"=30)

 

이렇게 해서 Sample 답안을 작성해 보았다. 이 방법은 분석함수의 튜닝방법이 아니라 예외적으로 SQL 튜닝방법론에서 언급되었던 방법을 사용하였다. 물론 여기서 페이징처리를 한다면 추가적인 성능향상이 가능하지만 Sample이므로 여기서 멈추기로 한다. 위의 답안은 Sample 이므로 점수에서 빠진다. 또한 이 부분은 분석함수의 튜닝 방법이 아니다. 하지만 앞으로 풀게 될 문제들은 모두 분석함수와 관련된 문제들이다.

 

이제 시작해보자.

 

문제1에서 분석함수와 관련된 비효율이 하나 있다. 이와 관련된 비효율, 해결방법, 그리고 해결된 SQL과 실행계획을 제시해야 한다.

 

문제1의 비효율 2 : 구체적인 설명

문제1의 비효율 2 해결방법 : 구체적인 설명 

문제1의 비효율 2가 해결된 SQL과 실행계획 제시

 

이제 좀더 어려운 문제를 풀어보자. 아래의 문제를 100% 맞춘 사람은 아무도 없었다.

 

문제2) 아래의 SQL 에서 성능상 문제점을 발견하고 개선하시오. 성능상 문제점은 4가지 이다. 4가지의 비효율을 발견하고 이를 모두 개선해야 한다. 단 인덱스를 추가로 생성하거나 변경하면 안 된다.

SELECT *

  FROM

  ( SELECT /*+ INDEX(T PK_SALES_T) */ PROD_ID, CUST_ID, TIME_ID, CHANNEL_ID, AMOUNT_SOLD,

                ROW_NUMBER()     OVER ( PARTITION BY PROD_ID ORDER BY CUST_ID,CHANNEL_ID,TIME_ID NULLS FIRST) AS RN,

                SUM(AMOUNT_SOLD) OVER ( ORDER BY CUST_ID,CHANNEL_ID,TIME_ID,PROMO_ID   ) AS SUM_AMT

           FROM SALES_T T

          WHERE PROD_ID = 30 )

 WHERE RN <= 10 ;

 

---------------------------------------------------------------------------------------------------------

| Id  | Operation                      | Name       | Starts | A-Rows |   A-Time   | Buffers | Used-Mem |

---------------------------------------------------------------------------------------------------------

|   0 | SELECT STATEMENT               |            |      1 |     10 |00:00:00.43 |   28337 |          |

|*  1 |  VIEW                          |            |      1 |     10 |00:00:00.43 |   28337 |          |

|*  2 |   WINDOW SORT PUSHED RANK      |            |      1 |  29282 |00:00:00.40 |   28337 | 1999K (0)|

|   3 |    WINDOW SORT                 |            |      1 |  29282 |00:00:00.30 |   28337 | 1684K (0)|

|   4 |     TABLE ACCESS BY INDEX ROWID| SALES_T    |      1 |  29282 |00:00:00.18 |   28337 |          |

|*  5 |      INDEX RANGE SCAN          | PK_SALES_T |      1 |  29282 |00:00:00.04 |     118 |          |

---------------------------------------------------------------------------------------------------------

 

Predicate Information (identified by operation id):

---------------------------------------------------

   1 - filter("RN"<=10)

   2 - filter(ROW_NUMBER() OVER ( PARTITION BY "PROD_ID" ORDER BY "CUST_ID","CHANNEL_ID",INTERNAL_FUNCTION("TIME_ID")

              NULLS FIRST)<=10)

   5 - access("PROD_ID"=30)

 

아래처럼 정답을 제시하면 된다.

 

문제2의 비효율 1 : 구체적인 설명

문제2의 비효율 1의 해결방법 : 구체적인 설명 

문제2의 비효율 1이 해결된 SQL과 실행계획 제시

 

문제2의 비효율 2 : 구체적인 설명

문제2의 비효율 2의 해결방법 : 구체적인 설명 

문제2의 비효율 2가 해결된 SQL과 실행계획 제시

 

문제2의 비효율 3 : 구체적인 설명

문제2의 비효율 3의 해결방법 : 구체적인 설명 

문제2의 비효율 3이 해결된 SQL과 실행계획 제시

 

문제2의 비효율 4 : 구체적인 설명

문제2의 비효율 4의 해결방법 : 구체적인 설명 

문제2의 비효율 4가 해결된 SQL과 실행계획 제시

 

문제의 구성
이렇게 하여 총 다섯 문제가 출제되었다. 문제 1에는 비효율이 하나이고 문제 2에는 비효율이 넷이다. 다섯 가지 비효율 모두 분석함수와 관련된 것들이다. 실습환경은 Oracle 10g R2, Oracle 11g R1, Oracle 11g R2로 한정한다. 답안은 2011년 2 18일 공개될 예정이다. 답안을 바로 공개하지 않는 이유는 튜닝실습을 유도하기 위함이다. SQL 두개를 분석하는데 이틀이면 넉넉한 시간이므로 충분히 생각하고 답을 작성하기 바란다. 자신이 튜너가 되었다고 가정하고 비효율을 모두 찾아보길 바란다.


다른 사람들은 몇 점 정도 받았나?

몇몇 지인들에게 퀴즈를 내본 결과 100점은 아무도 없었다. 80점이 평균적인 튜너의 수준이라는 이야기 이다. 개발자의 경우는 60점을 받더라도 실망해서는 안 된다. 개발자가 60점이면 괜찮은 수준이다. 점수에 대해 오해는 하지 말기 바란다. 이 퀴즈로 받은 점수는 분석함수와 관련된 것일 뿐, 전반적인 SQL 튜닝능력에 대한 점수가 아니다. 또한 100 점 이상을 받을 수도 있다. 필자가 알고 있는 튜닝포인트는 5가지뿐이다. 여러분들이 6~7가지 이상의 비효율과 튜닝 포인트를 잡아내어 필자를 능가하는 점수를 받는 것도 가능하다.


행운을 빈다.

 

Posted by extremedb
,